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I. Introduction 

As a contribution to the more general problem of model based control of the AGS 

Booster, in this note we discuss the correction of a distorted closed orbit in the machine. 

There are many possible schemes to correct a distorted closed orbit in a circular accel- 

erator. The harmonic correction procedure is particularly attractive since it is tailored to 

the periodic structure of the machine and moreover makes use of well optimized fast com- 

puter routines. 111 To correct a distorted orbit, one could physically displace some magnets 

or use the angular kick on the trajectory provided by correcting coils. The former method 

is only suitable for day-one adjustements, while the latter can be used at any time during 

the life of the accelerator. This note discusses the use of correcting or steering magnets. 

The problem of correction is particularly easy to solve in cases like the AGS Booster, 

where the number of PUE’s or beam monitors coincides with the number of correctors and 

where monitors and correctors are located in the same position and are equally spaced (!). 

II. Theoy of harmonic orbit correction 

The equation of motion in curvilinear coordinates of a particle in a cyclic accelerator 

can be written as follows 

2 + K(s)y = F(s), (1) 

*. where y(s) is the transverse displacement (horizontal or vertical) of the trajectory from the 



ideal orbit and s is the distance along the circumference. Using the Floquet transformation 

Equation (1) becomes 

$ + u2Tj = u2p3’“F[3(qs)] = u”f(q5). 

Here, 77 is a function of r$ and the function f on the r.h.s of Equation (3) is in effect 

the sum of an error function f” and a correction function f’ 

f(4) = f’ + f”* (4 

A special solution r/( 4) of Equation (3) with periodic boundary conditions determines 

the cl.osed orbit y = #q. 

In practice, the orbit y(4) is sampled at fixed angles +k, where the PUE’s are located. 

Therefore, the input to the correction calculation is a set of measured data y or of 7, i.e. 

orbit weighted by the local values of /3k. This input can be expanded in 

sum, with coefficients E, to be calculated by a Fast Fourier Transform 

where N is the number of sample points (monitors and correctors), and 

a discrete Fourier 

(5) 

(6) 

Note that, because of the symmetries of the ,B functions, the locations of monitors 

and correctors are approximatively equidistant also in Floquet’s angles. 
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The function f’ of Equation (4) re p resenting the errors in the machine is a periodic 

function of the Floquet angle 4 with periodicity 1 (the whole machine) and its values at 

the observation points form a discrete set that can be represented by a Fourier expansion 

with coefficients Fne, i.e. 

(7) 
n=l 

The relationship between the Fourier coefficients of the machine error function f” 

and the coefficients of the distorted closed orbit function 77 can be found by inserting the 

expansions of Equations (5) and (7) into the differential Equation (3). It is found 

F," = 
Y2 

y2 - (n - 112 E7L. (8) 

Now, to correct the distorted orbit the correction must cancel the driving term of the 

errors: f” = -f’, or 

F,’ = -F,’ 

for each n. The correction is achieved by local deflections 6& of the trajectory produced 

by steering coils. The relation between deflections and correcting function values is found 

immediately by rewriting Equation (1) as follows 

that shows how F has to be interpreted as a deflecting force. The deflection produced by 

a steering magnet can be written 
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the integrals being extended to the azimuthal length of the correctors. For short correctors 

In terms of the field integral B6s in each corrector, the local deflections is expressed 

as 

B63 
68 = --z--- 

BP ’ (12) 

with Bp the magnetic rigidity of the particle beam. For short correctors, the set of discrete 

deflections used to achieve orbit correction is 

If we write the Fourier expansion for f’, analogous to Equation (5) and invert it, then use 

Equations (8) and (lo), th e o f 11 owing relations between the deflection Fourier coefficients 

to correct the orbit and the orbit coefficients are finally found 

Y2 - 
Y2 - (1 - ?2)2 

E, = 2 &-!%ei(r-lMk_ 

k=l 

(14) 

This set of linear equations can be solved by Fourier anti-Transform to give the values 

of needed deflections b6k. From these and Equation (14) the field integral in the steering 

coils can be calculated. 

III. Computer solution. Examples 

A computer code to calculate the harmonic correction of a distorted closed orbit in the 

present assumption, valid for the AGS Booster, of equal number of monitors and correctors 

does the following. 
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The input is: 

p function and of 

KI,". 

a set ?Jk, (k=l,N) f b o o served beam positions; the values of the relevant 

the tune u at the same points; the value of Bp; the corrector strengths 

The code weights the numbers Yk with the values of a, calculates the coefficients 

E,, (n=l,N), by Fast F ourier Transform and then the 1.h.s. of Equation (14). 

The next step is to perform a Fast Fourier anti-Transform of the E, set to reconstruct 

the orbit and an anti-Transform to calculate the coefficients of the r.h.s. of Equation (14). 

From these, using the set of KkC and Equation (12) th e required field integrals in the 

correcting magnets are calculated. 

The AGS Booster has 24 monitors and correctors for each transverse plane. They 

are located at the entrance of each quadrupole and are equally spaced. In the present 

calculation we have studied the horizontal orbit correction, with monitors and correctors 

at the entrance of the focusing quads. Lacking a real machine, the orbit readings were 

simulated by random numbers corresponding to a closed orbit with up to 5 mm distortions 

and average value zero. To check the Fourier Transform and to simulate an hypothetical 

periodicity in the errors, a sine modulation with frequency 6 (the number of periods in the 

lattice) with variable amplitude and random overall phase was added to the pure white 

noise random values for the orbit. 

’ 

p and v values were calculated using the machine design code MAD121, running in- 

teractively on the Apollo Workstation, with standard data for the Booster, with results 

shown in Figures 1 and 2. 

Fourier Transforms, forward and backwards, were executed using Fast FT routines 

of the package SLATEC on the Apollo. A Fast FT produces a spectrum of amplitudes 

extending only to a frequency equal to half of the sampled points (here, only 12 frequency 

values). FFT was chosen because of its speed, since it is planned to repeat these calcula- 

tions for control of the real machine in quasi-real time. Before executing the antitransform, 

we tried some low-pass filtering of the spectrum, by cutting frequencies above some thresh- 

5 



old. We found, as expected that harmonic correction is more effective on sine modulated 

distorted orbit data than on the random part, that in general contains high frequencies. 

Figure 3 shows the results of the calculation for a pure random orbit simulation. 

The lower graph pair represents the distorted orbit before and after correction. In the 

calculation we assumed that the corrector strength parameters were all the same, that 

the correction itself was affected by a 5% error and that the corrected orbit could not be 

read better than f0.5mm. The upper curve represents the correction B6s needed at each 

corrector location along the ring in [gauss-cm]. Figure 4 shows the Fourier spectrum for 

this case (amplitude and phase). 

Figure 5 shows what happens when a sinusoidal variation with frequency f = 6w, of 

the same aplitude is added to the random values. The orbit is being corrected with about 

half the corrector strengths needed for the previous case, since this is a kind of correction 

that Fourier seems to enjoy. Figure 6 shows the spectrum for this case. 
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Appendix. List of the Fortran code 

program ORBIT 

C 23-Sep-1988 
C random orbit for correction 

parameter (m=48) 
integer rand c,seed 
real x(m)~y(m),u(m),beta x(m), 

& eta(m),work(2*m+l5),c(m),phi(m), 
& p(m),dy(m),b_ds(m) 

data AA,bias,ds,pi /.005,10.,.2286,3.141592654/ 
c-------------_-------------- ~--~-------~~~~-------~~~~~~~~__~---------- 

open (10, file='orbit_beta.dat', status='unknown') 
read (10,") NN 

N6 = NN/6 
do 100 i = l,N6 

100 read (10, *,err=120) x(i),beta_x(i),dummy (read beta 
120 read (lo,*) qx {read Qx 

read (lo,*) b-rho 
close (10) 

dx = x(2) -x(l) 
do 130 i = N6+1,NN 

x(i) = x(i-1) +dx 

130 
beta x(i) = beta_x(i-N6*((i-l)/N6)) 

continue 
c---______-_------_____--___--------______---_-------_________--------- 

write (6,600O) 
6000 format ('enter i filtr, mod-depth : ‘,$) 

read (5,*) i_frltr,depth 

C call srand_c(seed) 

y_ave = 0 
rr2 = 2*(rand c()+1)/32768. -1 (random number 

do 200 i =l,NN - 
rrl = 2*(rand_c()+1)/32768. -1 {simulated orbit 
y(i) = AA*(rrl +depth*sin(l2*i*pi/NN +rr2))/(l+depth) 

y_ave = y_ave +y(i) 
200 continue 

y_ave = y_ave/NN 
y 2ave = 0 

do 210 i = l,NN 
y(i) = y(i) -y_ave 
eta(i) = y(i)/sqrt(beta_x(i)) 
u(i) = eta(i) 
y_2ave = y_2ave +y(i)*y(i) 

210 continue 
y_2ave = sqrt(y_2ave)/~~ 

c------___-----__________----____-_--------______---------__________---_ 

call rffti(NN,work) {FFT initial. 
call rfftf(NN,eta,work) {FFT transform 

do 300 i = l,NN/2-1 
b = eta(2*i) {spectrum 
a = eta(2*i+l) 1 
c(i) = sqrt(a*a +b*b) (amplitude 
if (a.ne.0 .or. b.ne.O) phi(i) = atan2(a,b) {phase 

. 300 continue 

do 320 i = i filtr,NN 
320 eta(i) =-0. 

do 330 i = l,NN {FFT coeff 



p(.i) = -eta(i)*qx*qx/(qx*qx-(l-i)**2) 
330 continue 

(of correction 

dy__2av = 
b ds 2av= 

do TOO-i = 
deta = 

= 

i;(i) = 
= 

;s' = 

p(i) = 
dtheta = 
b ds(i) = 
dy 2av = 
b ds 2av= 

400 continue 
dy_2av = 
b_ds_2av= 

call rfftb(NN,eta,work) 
call rfftb(NN,p,work) 

{FFT anti- 
{transform 

0 
0 
l,NN 
u(i) -eta(i)/~~ 
2*(rand c()+1)/32768. -1 
deta*sqrt(beta x(i)) +O.lO*rr*AA 
2*(rand c()+l)T32768. -1 
ds*(l +??.05*rr) 
p (ii/NN 
ds/ (beta x(i) *sqrt(beta_x(i)))*p(i) 
b rho*dtEeta 
dy_2av +dy(i)*dy(i) 
b_ds_2av +b_ds(i)*b_ds(i) 

(corr. strength 

sqrt(dy_2av)/NN 
l.e6*sqrt(b_ds_2av)/NN (gauss-cm 

(orb. correction 

open (20, file='orbit.dat',-status='unknown') 
open (22, file='orbit.cor', status='unknown') 

xsrior = x(l) -N6*dx 
do 410 i = l,N6-1 

j = NN-(N6-l)+i 
x-prior = x-prior +dx 

Y-- = l.e3*y(j) 

dy - 
410 wriG 

= l.e3*dy(j) 
(20,' (3g13.5)') 

& x_prior,y_mm,dy mm - 
do 420 i = l,NN 

(write correction 

(write orbit 
{to file 

b ds_gdm= l.e5*b_ds(i) +bias 
wriFe (22,' (31113.5)') x(i),b_ds_gdm,bias 

Y-- = l.e3*y(i) 

dY__- = l.e3*dy(i) 
420 write (20,' (3g13.5)') x(i),y_-'dy_- 

x next = x(NN) 
do z30 i = l,N6 

x next = x next +dx 

YImm = lTe3*y(i) 

dy - 
write 

= l.e3*dy(i) 
430 (20,' 

write 
(3g13.5)') x next,y mm,dy_mm 

write 
(20,*) i filtr-l,F harmonics; mod depth=',depth 
(20,") - 

- 

& 

write 
' <y2>=',y_2ave,'; <B ds>=',b ds 2av,'; <dy>=' - 
(6 

-- 
,*) 

,dy_2av 

& ' <y2>=',y 2ave,'; <B ds>=',b ds 2av,'; 
write (22,*) 'eoZ' 

- -- <dy>=',dy 2av - 

write (20,") 'eod' 
close (22) 
close (20) 

c--___---__------_-__-----_--_----___------_____----______--________- 

open (21, file='orbit.spc', status='unknown') 
do 500 i = l,NN/2-1 

:~ooo 
=I. 
= l.e3*c(i) 

500 write 
write 

(21,'(6g13.5)') ri,clOOO,phi(i),dummyl 
(21,*) 'eod: spectrum' 

{write spectrum 
tto file 

close (21) 
c___-____--______-____----_______-_____----_____----____----_____---- 

stop 'files ** orbit.dat ; orbit.cor ; orbit.spc ** written' 
end 
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